0=-4.9t^2+147

Simple and best practice solution for 0=-4.9t^2+147 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-4.9t^2+147 equation:



0=-4.9t^2+147
We move all terms to the left:
0-(-4.9t^2+147)=0
We add all the numbers together, and all the variables
-(-4.9t^2+147)=0
We get rid of parentheses
4.9t^2-147=0
a = 4.9; b = 0; c = -147;
Δ = b2-4ac
Δ = 02-4·4.9·(-147)
Δ = 2881.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{2881.2}}{2*4.9}=\frac{0-\sqrt{2881.2}}{9.8} =-\frac{\sqrt{}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{2881.2}}{2*4.9}=\frac{0+\sqrt{2881.2}}{9.8} =\frac{\sqrt{}}{9.8} $

See similar equations:

| -10k÷11=3-2k | | 3(1+7n)-4=125 | | 2x-2/5=-8 | | n-21=(5)(5) | | -11+7v=-1+8v | | -11+l/4=-5 | | (10+4x)÷2-1=3x | | -6x+18=x-10 | | -6=-4+w/12 | | 19.95+.21p=24.95+.16 | | -4+8r=-r+5 | | -14=-6i-2 | | 50x-80x+100=0 | | 6c-3=4c+9 | | g/5-8=-10 | | 4(3a-6)=36 | | 2x(2+3x)=26x+868 | | 50=-4.9t^2+147 | | 4y-2+4=2y+4 | | 18-7x+7x=8x+2 | | 64=4(5e+1) | | 200+(50x)-(100(80x))=0 | | 1+x=13+3x | | 4m^2-5m=-3 | | 12x+40+8x+80=180 | | x+11/5x=384 | | 12x+40=12x+40 | | 11x+6=-9x+66 | | -3(3d-6)=63 | | -6x+8=-8x-14 | | 3x-9=-7x-39 | | 8x+4=2*x-2 |

Equations solver categories